3.2.21 \(\int \frac {\text {sech}^4(c+d x)}{(a+b \tanh ^2(c+d x))^2} \, dx\) [121]

Optimal. Leaf size=77 \[ -\frac {(a-b) \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} b^{3/2} d}+\frac {(a+b) \tanh (c+d x)}{2 a b d \left (a+b \tanh ^2(c+d x)\right )} \]

[Out]

-1/2*(a-b)*arctan(b^(1/2)*tanh(d*x+c)/a^(1/2))/a^(3/2)/b^(3/2)/d+1/2*(a+b)*tanh(d*x+c)/a/b/d/(a+b*tanh(d*x+c)^
2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3756, 393, 211} \begin {gather*} \frac {(a+b) \tanh (c+d x)}{2 a b d \left (a+b \tanh ^2(c+d x)\right )}-\frac {(a-b) \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} b^{3/2} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^4/(a + b*Tanh[c + d*x]^2)^2,x]

[Out]

-1/2*((a - b)*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(a^(3/2)*b^(3/2)*d) + ((a + b)*Tanh[c + d*x])/(2*a*b*d*
(a + b*Tanh[c + d*x]^2))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 393

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d))*x*((a + b*x^n)^(p
 + 1)/(a*b*n*(p + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x]
 /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 3756

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/(c^(m - 1)*f), Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)
^n)^p, x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2] && (IntegersQ[n, p
] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rubi steps

\begin {align*} \int \frac {\text {sech}^4(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx &=\frac {\text {Subst}\left (\int \frac {1-x^2}{\left (a+b x^2\right )^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {(a+b) \tanh (c+d x)}{2 a b d \left (a+b \tanh ^2(c+d x)\right )}-\frac {(a-b) \text {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\tanh (c+d x)\right )}{2 a b d}\\ &=-\frac {(a-b) \tan ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} b^{3/2} d}+\frac {(a+b) \tanh (c+d x)}{2 a b d \left (a+b \tanh ^2(c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.24, size = 83, normalized size = 1.08 \begin {gather*} \frac {(-a+b) \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )+\frac {\sqrt {a} \sqrt {b} (a+b) \sinh (2 (c+d x))}{a-b+(a+b) \cosh (2 (c+d x))}}{2 a^{3/2} b^{3/2} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^4/(a + b*Tanh[c + d*x]^2)^2,x]

[Out]

((-a + b)*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]] + (Sqrt[a]*Sqrt[b]*(a + b)*Sinh[2*(c + d*x)])/(a - b + (a +
b)*Cosh[2*(c + d*x)]))/(2*a^(3/2)*b^(3/2)*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(258\) vs. \(2(65)=130\).
time = 2.41, size = 259, normalized size = 3.36

method result size
derivativedivides \(\frac {-\frac {2 \left (-\frac {\left (a +b \right ) \left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a b}-\frac {\left (a +b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a b}\right )}{a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a}-\frac {\left (a -b \right ) \left (-\frac {\left (a -\sqrt {b \left (a +b \right )}+b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}+\frac {\left (-a -\sqrt {b \left (a +b \right )}-b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{b}}{d}\) \(259\)
default \(\frac {-\frac {2 \left (-\frac {\left (a +b \right ) \left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a b}-\frac {\left (a +b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a b}\right )}{a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a}-\frac {\left (a -b \right ) \left (-\frac {\left (a -\sqrt {b \left (a +b \right )}+b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}+\frac {\left (-a -\sqrt {b \left (a +b \right )}-b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{b}}{d}\) \(259\)
risch \(-\frac {a \,{\mathrm e}^{2 d x +2 c}-b \,{\mathrm e}^{2 d x +2 c}+a +b}{b d a \left (a \,{\mathrm e}^{4 d x +4 c}+b \,{\mathrm e}^{4 d x +4 c}+2 a \,{\mathrm e}^{2 d x +2 c}-2 b \,{\mathrm e}^{2 d x +2 c}+a +b \right )}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}+2 a b}{\left (a +b \right ) \sqrt {-a b}}\right )}{4 \sqrt {-a b}\, d b}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}+2 a b}{\left (a +b \right ) \sqrt {-a b}}\right )}{4 \sqrt {-a b}\, d a}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}-2 a b}{\left (a +b \right ) \sqrt {-a b}}\right )}{4 \sqrt {-a b}\, d b}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}-2 a b}{\left (a +b \right ) \sqrt {-a b}}\right )}{4 \sqrt {-a b}\, d a}\) \(326\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^4/(a+b*tanh(d*x+c)^2)^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(-2*(-1/2*(a+b)/a/b*tanh(1/2*d*x+1/2*c)^3-1/2*(a+b)/a/b*tanh(1/2*d*x+1/2*c))/(a*tanh(1/2*d*x+1/2*c)^4+2*a*
tanh(1/2*d*x+1/2*c)^2+4*b*tanh(1/2*d*x+1/2*c)^2+a)-(a-b)/b*(-1/2*(a-(b*(a+b))^(1/2)+b)/a/(b*(a+b))^(1/2)/((2*(
b*(a+b))^(1/2)-a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2))+1/2*(-a-(b*(
a+b))^(1/2)-b)/a/(b*(a+b))^(1/2)/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b)
)^(1/2)+a+2*b)*a)^(1/2))))

________________________________________________________________________________________

Maxima [A]
time = 0.53, size = 127, normalized size = 1.65 \begin {gather*} \frac {{\left (a - b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a + b}{{\left (a^{2} b + a b^{2} + 2 \, {\left (a^{2} b - a b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a^{2} b + a b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )}\right )} d} + \frac {{\left (a - b\right )} \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{2 \, \sqrt {a b} a b d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*tanh(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

((a - b)*e^(-2*d*x - 2*c) + a + b)/((a^2*b + a*b^2 + 2*(a^2*b - a*b^2)*e^(-2*d*x - 2*c) + (a^2*b + a*b^2)*e^(-
4*d*x - 4*c))*d) + 1/2*(a - b)*arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)/sqrt(a*b))/(sqrt(a*b)*a*b*d)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 569 vs. \(2 (65) = 130\).
time = 0.39, size = 1443, normalized size = 18.74 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*tanh(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

[-1/4*(4*a^2*b + 4*a*b^2 + 4*(a^2*b - a*b^2)*cosh(d*x + c)^2 + 8*(a^2*b - a*b^2)*cosh(d*x + c)*sinh(d*x + c) +
 4*(a^2*b - a*b^2)*sinh(d*x + c)^2 - ((a^2 - b^2)*cosh(d*x + c)^4 + 4*(a^2 - b^2)*cosh(d*x + c)*sinh(d*x + c)^
3 + (a^2 - b^2)*sinh(d*x + c)^4 + 2*(a^2 - 2*a*b + b^2)*cosh(d*x + c)^2 + 2*(3*(a^2 - b^2)*cosh(d*x + c)^2 + a
^2 - 2*a*b + b^2)*sinh(d*x + c)^2 + a^2 - b^2 + 4*((a^2 - b^2)*cosh(d*x + c)^3 + (a^2 - 2*a*b + b^2)*cosh(d*x
+ c))*sinh(d*x + c))*sqrt(-a*b)*log(((a^2 + 2*a*b + b^2)*cosh(d*x + c)^4 + 4*(a^2 + 2*a*b + b^2)*cosh(d*x + c)
*sinh(d*x + c)^3 + (a^2 + 2*a*b + b^2)*sinh(d*x + c)^4 + 2*(a^2 - b^2)*cosh(d*x + c)^2 + 2*(3*(a^2 + 2*a*b + b
^2)*cosh(d*x + c)^2 + a^2 - b^2)*sinh(d*x + c)^2 + a^2 - 6*a*b + b^2 + 4*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^3
+ (a^2 - b^2)*cosh(d*x + c))*sinh(d*x + c) - 4*((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c
) + (a + b)*sinh(d*x + c)^2 + a - b)*sqrt(-a*b))/((a + b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x +
 c)^3 + (a + b)*sinh(d*x + c)^4 + 2*(a - b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh(d*x +
 c)^2 + 4*((a + b)*cosh(d*x + c)^3 + (a - b)*cosh(d*x + c))*sinh(d*x + c) + a + b)))/((a^3*b^2 + a^2*b^3)*d*co
sh(d*x + c)^4 + 4*(a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^3*b^2 + a^2*b^3)*d*sinh(d*x + c)^4
+ 2*(a^3*b^2 - a^2*b^3)*d*cosh(d*x + c)^2 + 2*(3*(a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^2 + (a^3*b^2 - a^2*b^3)*d
)*sinh(d*x + c)^2 + (a^3*b^2 + a^2*b^3)*d + 4*((a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^3 + (a^3*b^2 - a^2*b^3)*d*c
osh(d*x + c))*sinh(d*x + c)), -1/2*(2*a^2*b + 2*a*b^2 + 2*(a^2*b - a*b^2)*cosh(d*x + c)^2 + 4*(a^2*b - a*b^2)*
cosh(d*x + c)*sinh(d*x + c) + 2*(a^2*b - a*b^2)*sinh(d*x + c)^2 + ((a^2 - b^2)*cosh(d*x + c)^4 + 4*(a^2 - b^2)
*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2 - b^2)*sinh(d*x + c)^4 + 2*(a^2 - 2*a*b + b^2)*cosh(d*x + c)^2 + 2*(3*(a
^2 - b^2)*cosh(d*x + c)^2 + a^2 - 2*a*b + b^2)*sinh(d*x + c)^2 + a^2 - b^2 + 4*((a^2 - b^2)*cosh(d*x + c)^3 +
(a^2 - 2*a*b + b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(a*b)*arctan(1/2*((a + b)*cosh(d*x + c)^2 + 2*(a + b)*co
sh(d*x + c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2 + a - b)*sqrt(a*b)/(a*b)))/((a^3*b^2 + a^2*b^3)*d*cosh(d*x
 + c)^4 + 4*(a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^3*b^2 + a^2*b^3)*d*sinh(d*x + c)^4 + 2*(a
^3*b^2 - a^2*b^3)*d*cosh(d*x + c)^2 + 2*(3*(a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^2 + (a^3*b^2 - a^2*b^3)*d)*sinh
(d*x + c)^2 + (a^3*b^2 + a^2*b^3)*d + 4*((a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^3 + (a^3*b^2 - a^2*b^3)*d*cosh(d*
x + c))*sinh(d*x + c))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {sech}^{4}{\left (c + d x \right )}}{\left (a + b \tanh ^{2}{\left (c + d x \right )}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**4/(a+b*tanh(d*x+c)**2)**2,x)

[Out]

Integral(sech(c + d*x)**4/(a + b*tanh(c + d*x)**2)**2, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 143 vs. \(2 (65) = 130\).
time = 0.71, size = 143, normalized size = 1.86 \begin {gather*} -\frac {\frac {{\left (a - b\right )} \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + b e^{\left (2 \, d x + 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{\sqrt {a b} a b} + \frac {2 \, {\left (a e^{\left (2 \, d x + 2 \, c\right )} - b e^{\left (2 \, d x + 2 \, c\right )} + a + b\right )}}{{\left (a e^{\left (4 \, d x + 4 \, c\right )} + b e^{\left (4 \, d x + 4 \, c\right )} + 2 \, a e^{\left (2 \, d x + 2 \, c\right )} - 2 \, b e^{\left (2 \, d x + 2 \, c\right )} + a + b\right )} a b}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*tanh(d*x+c)^2)^2,x, algorithm="giac")

[Out]

-1/2*((a - b)*arctan(1/2*(a*e^(2*d*x + 2*c) + b*e^(2*d*x + 2*c) + a - b)/sqrt(a*b))/(sqrt(a*b)*a*b) + 2*(a*e^(
2*d*x + 2*c) - b*e^(2*d*x + 2*c) + a + b)/((a*e^(4*d*x + 4*c) + b*e^(4*d*x + 4*c) + 2*a*e^(2*d*x + 2*c) - 2*b*
e^(2*d*x + 2*c) + a + b)*a*b))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\mathrm {cosh}\left (c+d\,x\right )}^4\,{\left (b\,{\mathrm {tanh}\left (c+d\,x\right )}^2+a\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cosh(c + d*x)^4*(a + b*tanh(c + d*x)^2)^2),x)

[Out]

int(1/(cosh(c + d*x)^4*(a + b*tanh(c + d*x)^2)^2), x)

________________________________________________________________________________________